

Carbon Regulations and Consequences

Maritime Day Åland

Mårten Schei-Nilsson – DNV / Area Manager Sweden, Denmark, Finland etc

23 May 2024

- Introduction
- IMO/EU general status on GHG emissions
- EU ETS
- Fuel EU Maritime
- IMO CII
- Solutions

- Introduction
- IMO/EU general status on GHG emissions
- EU ETS
- Fuel EU Maritime
- IMO CII
- Solutions

Trading pattern ro-pax in the Baltic region

- 2023 traffic patterns for Passenger/Ro-Ro ships operating in the Baltic Sea and west of Sweden
- 140 unique vessels > 5000 gross ton

DNV in the Baltic+ Region

- High coverage of DNV surveyors in the Baltic+ region
- RoRo/RoPax hubs
- 400+ surveys/year on RoRo/RoPax vessels

- Introduction
- IMO/EU general status on GHG emissions
- EU ETS
- Fuel EU Maritime
- IMO CII
- Solutions

Strengthened IMO strategy on GHG reductions (MEPC 80)

Units: GHG emissions

Total: Well-to-wake GHG emissions; Intensity: CO₂ emitted per transport work; Fuel: Uptake of zero or near-zero GHG technologies, fuels and/or energy sources

©DNV 2023

The regulatory framework to reduce GHG emissions

- Introduction
- IMO/EU general status on GHG emissions
- EU ETS
- Fuel EU Maritime
- IMO CII
- Solutions

Shipping to be included in the EU Emissions Trading System from 2024

	2023	20)24	2025	2026	202	7 2028 onwards
Ship sizes and type							
Cargo/passenger ships (5000+ GT)							
Offshore ships (5000+ GT)		1					
Offshore and general cargo ships (400-5000 GT)							To be decided
Other cargo/passenger ships (400-5000 GT)						Į.	To be decided
Greenhouse gases		·					
Carbon dioxide (CO ₂)							
Methane (CH ₄) and Nitrous oxide (N ₂ O)							
Phase-in							
% of emissions included in ETS scope		40	%	70%	100%	100%	6 100%
Reporting only (MRV)						_	
Included in ETS scope							

Emissions in the Baltic region

- Geographical distribution of fuel consumption for Passenger/Ro-Ro ships operating in the Baltic Sea and west of Sweden
- 140 unique vessels > 5000 gross ton
- Total fuel estimate of ~1.6 million toe
- CO_2 emission ~ 4.9 million ton

What does this mean for the industry?

• ELLETS will increase the cost of ROPAX		2024	2025	2026
	ROPAX additional cost EUA@70	122 372 675	214 152 181	305 931 687
significantly for the baltic trades	ROPAX additional cost EUA@90	157 336 296	275 338 518	393 340 740
12 DNV © 23 MAY 2024				

- Introduction
- IMO/EU general status on GHG emissions
- EU ETS
- Fuel EU Maritime
- IMO CII
- Solutions

FuelEU Maritime – requirements to lifecycle GHG intensity of energy

- Requirement to the yearly average well-to-wake GHG intensity of energy used on-board:
 - All ships above 5000 GT transporting passengers or cargo
 - 50% of energy used on voyages between EU and non-EU ports, 100% of energy used on intra-EU voyages and when at berth
 - Includes CH₄ and N₂O and electricity received, rewards for using wind power
 - Compliance can be banked and pooled, with some limitations across periods, ships and companies
 - Mandatory 2% RFNBO use from 2034, if use in 2031 is less than 1%. Equivalent fuels with a similar or higher decarbonisation potential can be accepted.
- Requirement to the use of shore power:
 - From 1 January 2030 for container and passenger ships not using zero-emission technologies: connect to shore power while at berth in TEN-T ports for more than 2 hours

Well to Wake GHG intensity = $\frac{gCO_{2eq}}{MJ}$

Reduction	2025	2030	2035	2040	2045	2050
Reduction (%)	2%	6%	14.5%	31%	62%	80%
Required GHG intensity (gCO ₂ e/MJ)	89.3	85.7	77.9	62.9	34.6	18.2

GHG Intensity limit

• Values are based on assumption and may vary once LCA is finalized.

• LNG (with high pressure 2-stroke engine) and LPG are the two fossil fuels compliant options until 2040.

 ^{23,MAY 2024} Sources: FuelEU regulation, MEPC documents, JRC default values for transport fuels

DNV ©

EU ETS and FuelEU Maritime compliance options

Option	EU ETS	FuelEU Maritime
Fossil LNG/LPG	+	+
Sustainable biofuels	++	++
Renewable fuels of non-biological origin (RFNBO), recycled carbon fuels (RCF) (e.g. e-methanol)	++	++
Shore power	++	++
Wind assisted propulsion	++	+
Energy efficiency	++	N/A
Onboard carbon capture and storage	++	?
Compliance balance (borrow, bank, pool)	N/A	+
Pay penalty	N/A	0

- Introduction
- IMO/EU general status on GHG emissions
- EU ETS
- Fuel EU Maritime
- IMO CII
- Solutions

CII - Carbon Intensity Indicator rating

Scope:

- Cargo, ro-pax and cruise ships above 5000 GT
- GT-based for vehicle carriers

Requirements:

- Every year from 2023: Annually calculate and report Carbon Intensity Indicator and rating A to E.
- Each ship needs to achieve rating C or better

Enforcement:

- If rating D for 3 consecutive years or rating E: develop and implement an approved corrective action plan as part of SEEMP III to achieve rating C or better
- Annual Statement of Compliance issued

Review to be conducted by 1 January 2026, e.g.:

- Reduction factors for 2027-2030
- Strengthened corrective actions
- Need for enhancement of the enforcement mechanism

Year	Reduction from 2019 ref. (mid-point of C-rating band)
2023	5 %
2024	7 %
2025	9 %
2026	11 %
2027-2030	To be decided

Carbon Intensity Indicator (CII) review

- Phased approach agreed
 - Data-gathering phase until MEPC 82, autumn 2024
 - Data analysis and potential amendments to the CII by MEPC 83, summer 2025
- No immediate changes to the CII framework
 - This includes correction factors and voyage adjustments
 - Potential amendments in 2025 include:
 - CII **reduction requirements** from 2026 to 2030 to be aligned with the revised GHG Strategy ambitions
 - Correction factors and/or additional metrics
 - Revised enforcement mechanism
 - Application of LCA guidelines

Percentage of ships in different categories based on 2022 data.

Note: The above estimates are based on 2022 EU-MRV data. EU-MRV data only cover operational data for voyages from, to and between EU ports and in EU ports.

- Introduction
- IMO/EU general status on GHG emissions
- EU ETS
- Fuel EU Maritime
- IMO CII
- Solutions

Decarbonization options for shipping

Significant GHG reduction can be achieved by technical and operational measures. Up to 100% GHG reduction can only be achieved with Alternative fuels. Barriers to implementation includes:

- Cost
- Availability and infrastructure
- Onboard storage

Shipping needs to switch to carbon-neutral energy supply chains

Sustainable biomass for biofuels

Renewable electricity for electrofuels

Sustainable carbon for carbon-based electrofuels

Large scale CCS

Fuel production

Status: In operation, Decided, Under discussion

Fuel bunkering Status: In operation, Decided, Under discussion

Note that the majority of the projects presented are «under discussion». There are uncertainty regarding their realization.

Fuel production Status: In operation

Finland Sweden H₂ Latvia Me Denmark Lithuania United Kingdom M Belarus

Fuel bunkering Status: In operation

Ammonia – Methanol – Hydrogen – LNG

DNV Maritime Forecast 2023

FIGURE 1-4

Estimated supply of carbon-neutral fuel

WHEN TRUST MATTERS

DNV

Economic Feasibility Study for RoPax

What we did

- This study has investigated the economic feasibility of different fuel and technology strategies for a 25 000 GT RoPax vessel in operation.
- We investigated the economic potential of three different fuel pathways (Fuel oil baseline vessel, DF LNG and DF Methanol), and compared it to two onboard carbon capture scenarios, where the capture unit had the capacity to capture 70% CO2 annually.

Baseline vessel definition

Newbuild/in operation	In operation
Vessel capacity	25 000 GT
Vessel type	RoPax
Year of build	2005
Start year of cost analysis	2026
Remaining lifetime	25 years

Fuel Pathways

DNV

Range of Annual cost

The range of annual cost show that the low-cost onboard CCS scenario is competitive compared to the three other fuel pathways analysed in this study.

Discharge of the captured carbon and storage capacity

- For both onboard carbon capture scenarios where 70% of the carbon dioxide was captured annually, the amount of carbon dioxide captured is between 35 000 - 40 000 tonnes CO2
- Due to fixed routes, the captured carbon can be frequently discharged to shore, less volume is needed for onboard storage.
- We have assumed that the captured carbon will be discharged once per day
 - Between 95 110 tons CO2 per day
 - CO2 storage tank capacity: 85 -100 m3 (liquid CO2)

 $\mathsf{D}\mathsf{N}$

Thank you very much for you attention!

www.dnv.com